国際学会報告

ECASIA'19 [2019年9月15日~20日] AVS 66th [2019年10月20日~25日] SIMS-22 [2019年10月20日~25日] PSA-19 [2019年11月3日~8日]

アルバック・ファイ株式会社分析室間宮一敏 飯田 真一

ECASIA'19 (18th European Conference on Applications of Surface and Interface Analysis)

開催日: 場所:

総参加者数:

2019年9月15日(日)〜20日(金) インターナショナルコングレスセンター (ドイツ ドレスデン) 約350名

概要:

ヨーロッパ各国で隔年で開催される表面分析の応用に関する 国際会議。通例は秋の開催。 次回は2021年6月にアイルランドのレムリックで開催される 予定。

エクスカージョンで訪れたエルベ川のロシュヴィッツ橋

Φ

3

当社からの発表(ECASIA'19)

	発表者	タイトル
1	間宮 一敏	Auger Electron Spectroscopy Analysis of Phase- change Memory Cells
2	寺島 雅弘	The Electronic Band Structure Analysis of OLED Device by Means of in-situ LEIPS and UPS combined with GCIB
3	Greg Fisher	Visualization of Nanoscale Features and Structural Assessment of (sub-)monolayer Coatings in Devices by Tandem MS Imaging
4	Kateryna Artyushkova	Multi-technique Surface Analysis of Graphenes
5	渡邉 勝己	Measurements of Empirical Relative Sensitivity Factors in CrKa X-ray
6	Ben Schmidt	New Analytical Options on PHI VersaProbe III XPS System for Characterization of Electronic Materials
7	Jennifer Mann	Beyond the Surface: Design & Applications of a New Laboratory-Based Scanning XPS/HAXPES Instrument
8	Ashley Ellsworth	Using AES, EDS, and FIB to Detect, Identify, and Image Buried Metallic Particles
9	John Newman	XPS, TOF-SIMS, and AES Analysis of Fresh and Aged Alumina-Supported Silver Catalysts

4. Multi-technique Surface Analysis of Graphenes

Φ

5. Measurements of Empirical Relative Sensitivity Factors in CrKa X-ray

Φ

<u>背景・目的</u>

VersaProbe IIIは多彩なオプションが取り 付け可能なXPS測定装置である。

UPS/LEIPS(Low energy inverse photoemission spectroscopy)の組み合 わせにより、OLEDのような発光デバイス や太陽電池のような光電変換デバイスの評 価に重要な、仕事関数、イオン化エネル ギー、電子親和力などのバンド構造の重要 なパラメータが一通り取得可能である。

REELS (Reflection Electron Energy Loss Spectroscopy) はバンドギャップの評価 や水素の検出などユニークな分析が可能で ある。

* 文献:吉田 弘幸,「低エネルギー逆光電子分光装置の開発と有機エレクトロニクス への応用」,応用物理 84(3), 245-249(2015) 特許: P6108361(固体の空準位測定方法及び装置:吉田 弘幸)

 \mathbf{O}

7. Beyond the Surface: Design & Applications of a New Laboratory-Based Scanning XPS/HAXPES Instrument

<u>背景・目的</u>

PHI Quantes はAl Ka 線源とCr Ka 線源 を兼ね備えたラボ型HAXPES装置である。

両線源ともにマイクロフォーカスX線の照 射が可能で全く同一の微小ポイントで XPS/HAXPES のスペクトル取得が可能で ある。

本報告では PHI Quantes ならではの測定 結果を3例紹介する。

 (\mathbf{D})

7. Beyond the Surface: Design & Applications of a New Laboratory-Based Scanning XPS/HAXPES

AVS2019 (AVS 66th International Symposium and Exhibition)

開催日:2019年10月20日(日)~25日(金)場所:Greater Columbus Convention Center
(アメリカ オハイオ州コロンバス)総参加者数:約2500名

毎年アメリカ真空学会(AVS)によって開催される真空及びその 応用に関する国際会議と巨大な見本市。 今年は10月25日(日)からコロラド州デンバーにて開催予定。

AVS 66TH INTERNATIONAL SYMPOSIUM & EXHIBITION Greater Columbus Convention Center, Columbus, Ohio OCTOBER 20-25, 2019

会場となった Greater Columbus Convention Center

Φ

AVS

19 セ	ッシ	ョン一覧							
		A120	A122	A124	A210	A211	A212	A213	A214
10/20(日)	午後	バイオ							
10/21/日)	午前	バイオ	薄膜	薄膜	MEMS	表面科学	触媒	真空技術	原子プロセス
10/21(/5)	午後	バイオ	薄膜	薄膜	MEMS	データ解析	エネ遷移	真空技術	電子光学材料
	午前	バイオ	薄膜	薄膜	MEMS	表面科学	エネ遷移	真空技術	電子光学材料
10/22(火)	午後	バイオ	薄膜	薄膜	MEMS	表面科学		真空技術	電子光学材料
	夕方				ポスタ-	-セッション			1
10/22/7K)	午前	バイオ	薄膜	化学分析	磁性		エリプソ分光	触媒	電子光学材料
10/23(/JK)	午後	化学分析	薄膜	化学分析	磁性	表面科学	エリプソ分光	触媒	電子光学材料
	午前	化学分析	薄膜	光源	磁性	表面科学	材料劣化	触媒	電子光学材料
10/24(木)	午後	化学分析	薄膜	薄膜	光源	表面科学	材料劣化	触媒	
	夕方				ポスタ-	-セッション			
10/25(金)	午前							触媒	
		A215	A216	A220	A222	A226	B130	B131	B231
10/20(日)	午後								
	午前	レアアース	二次元					プラズマ	量子コンピュータ
10/21(月)	午後	レアアース	二次元	表面科学		二次元	プラズマ	プラズマ	量子コンピュータ
	午前	レアアース	二次元	表面科学		二次元	プラズマ	プラズマ	量子コンピュータ
10/22(火)	午後	レアアース	二次元	複合酸化物	ナノ科学	エネ遷移	プラズマ	プラズマ	量子コンピュータ
	夕方				ポスタ-	-セッション			
10/23(水)	午前	表面工学	二次元	複合酸化物	ナノ科学	二次元	原子プロセス	プラズマ	量子コンピュータ
.,	午後	表面工学	二次元	表面科学	ナノ科学	生産技術	原子プロセス	プラズマ	イオンビーム
	午前	エリプソ分光	二次元	表面科学	ナノ科学	生産技術			
10/24(木)	午後			表面科学	ナノ科学		原子プロセス	プラズマ	イオンビーム
,	夕方			·	ポスタ-	-セッション			·
10/25 (全)	午前	一次元	蒲瞙	表面科学	十 /科学	化学分析	プラズマ		

当社からの発表(AVS 66th)

	発表者	タイトル
1	Kateryna Artyushkova	Misinterpretations in the Spectroscopic Analysis of Heterogeneous Materials and Defected Structures
2	John Newman	What's New at PHI
3	Ben Schmidt	Characterization of Electronic Materials using Low Energy Inverse Photoemission Spectroscopy
4	Dave Carr	TOF-SIMS Tandem MS Imaging of (Sub-) Monolayer Coatings for Device Processing
5	Kateryna Artyushkova	Multi-technique Surface Analysis of Graphenes
6	Ashley Ellsworth	Using AES, EDS, and FIB to Detect, Identify, and Image Buried Metallic Particles
7	John Newman	XPS, TOF-SIMS, and AES Analysis of Fresh and Aged Alumina-Supported Silver Catalysts

2. What's New at PHI

Φ

日程:2019年10月20日(日)~25日(金)場所:みやこめっせ(京都)総参加者数:約360名(日本:約150名)

概要:

2年ごとに開催されるイオンビーム(SIMS)に関する国際会議。 ヨーロッパ、アジア、北米で持ち回り。日本での開催は2007年の 金沢以来、12年ぶり。次回は2021年にミネアポリス(米国)で 開催される予定。

会場の隣は平安神宮

Φ

 $\mathbf{\Phi}$

SIMS-22 セッション一覧

	1	10/21(月)			
	R1	R2	R3		
午前1	PLN				
午前2	PLN				
午後1	Bio1	High1	Cmplx1		
午後2	Bio1	Geo1	Cmplx2		
午後3	ポス	ターセッシ	ョン		

	1	10/22(火)			
	R1	R2	R3		
午前1	ML1	Fun1	Inorg1		
午前2	ML2	Fun2	Geo2		
午後1	Bio3	Fun3	Geo3		
午後2	Bio4	Fun4	High2		

	1	10/23(水)			
	R1	R2	R3		
午前1	Indu1	Indu2	Indu3		
午前2	Indu4	Indu5	Indu6		
午後1	Indu7	Indu8	Indu9		
午後2	Indu10	Indu11	Indu12		
午後3	ポス	ターセッシ	ョン		

	10/24(木)			
	R1	R2	R3	
午前1	PLN			
午前2	Bio5	Fun5	Cmplx3	

	10/25(金)			
	R1	R2	R3	
午前1	Bio6	Fun6	High3	
午前2	Geo4	Fun7	Inorg2	

Bio	生体試料
Cmplx	複雑な系
Fun	基礎研究
Geo	地質学/考古学/環境
High	高質量/高空間分解能
Indu	産業応用
Inorg	無機材料
ML	機械学習

28

当社からの発表 (SIMS-22)

	発表者	タイトル
1	Greg Fisher	Structural assessment of (sub-)monolayer coatings in device processing at high spatial resolving power by TOF-SIMS tandem MS imaging
2	飯田 真一	TOF-SIMS MS/MS depth profiling of OLED devices for elucidating the degradation process
3	Hsun-Yun Chang	Investigation of gas cluster ion beam for depth profiling of hybrid materials
4	関谷 美矢子	Fragmentation pattern of Fatty Acid Amides in TOF-SIMS with Tandem MS
5	飯田 真一	Wider Vision Capability of Curved Surface Sample Holder for TOF-SIMS Imaging
6	宮山 卓也	Bismuth attached intact molecular secondary ions [M+Bi] ⁺ under low-energy bismuth primary ion beam irradiation
	· · · · ·	

4. Fragmentation Pattern of Fatty Acid Amides in TOF-SIMS with Tandem MS

36

PSA-19 (8th International Symposium on Practical Surface Analysis)

開催日:2019年11月3日(日)~8日(金)場所:ホテルエミシア(新札幌)総参加者数:約100名

概要:

表面分析研究会(SASJ)と、韓国真空協会(KVS)が 3年ごとに日本/韓国と交互に開催する国際会議。 日本での開催は2013年の沖縄以来、6年ぶり。 次回は2022年に釜山で開催される予定。 8th International Symposium on Practical Surface Analysis (PSA-19) November 3 (Sun.), 8 (Fri.), 2019, Hokkaido, Japan

エクスカージョンで訪れた小樽

42

 $\mathbf{\Phi}$

Φ

セッション一覧 PSA-19

	11/4(月)
午前1	プレナリー
午前2	標準化
午後1	理論 & シミュレーション1
午後2	理論 & シミュレーション2
午後3 アプリケーションII (有機材料)	
	(有機材料)
	(有機材料)
	(月機材料)
	(有機材料) 11/5 (火)
午前1	(有機材料) 11/5 (火) Novel techniques &
午前1	(有機材料) 11/5 (火) Novel techniques & Instrumentation
午前1	(有機材料) 11/5 (火) Novel techniques & Instrumentation データ解析1
午前1 午前2 午後1	(有機材料) 11/5 (火) Novel techniques & Instrumentation データ解析1 データ解析2
午前1 午前2 午後1 午後2	(有機材料) 11/5 (火) Novel techniques & Instrumentation データ解析1 データ解析2
午前1 午前2 午後1 午後2	(有機材料) 11/5 (火) Novel techniques & Instrumentation データ解析1 データ解析2 ポスターセッション

$11/6(\pi k)$			
午前1	アプリケーション		
	(半導体、ナノバーティクル)		
午前2	アプリケーション		
	(鉄鋼材料)		
	11/7(木)		
午前1	アプリケーション		
	(SEM)		
午前2	標準化		
午後1	Novel Techniques &		
	Instrumentation		
午後2	アプリケーション		
	(大気圧XPS)		
午後3	Research Exchange Session		
	11/8(金)		
午前1	アプリケーション		
1 1111	(SIMS)		
ケ哉っ			
十則2	理論 & ンミユレーンヨン		
午前3	複合分析		

プリケーション
ナノパーティクル)
プリケーション
(鉄鋼はおり)
(亚大亚则个小个十)
7(木)
プリケーション
(SFM)
標準化
el Techniques &
strumentation
プリケーション
(大気圧XPS)
n Exchange Session
3(金)
プリケーション

43

当社からの発表 (PSA-19)

	発表者	タイトル
1	宮山 卓也	Depth Profile Study of OLED Materials using LEIPS with GCIB
2	橋本 真希	Core-shell Structure Analysis of Powder Materials using CrKa HAXPES
3	真田 則明	XPS and Multi-Technique Surface Analysis of Diamond Like Carbon and Carbon-Based Materials
4	飯田 真一	TOF-SIMS MS/MS Depth Profiling of OLED Devices -Toward the Elucidation of Degradation Process-

1. Depth profile study of OLED materials using LEIPS with GCIB

<u>背景・目的</u>

DLC(Diamond-like carbon)は高硬度で、耐摩 耗性に優れるため、工業的に広く用いられている。

DLCは、黒鉛とダイアモンドの中間の状態にあり、 sp2(黒鉛)とsp3(ダイアモンド)が混在している。 DLCの特性を評価する上で、sp2とsp3の状態分析を 行うことは必須である。

今回、DLC膜をXPS及びREELSで評価した結果を 紹介する。

<u>サンプル</u>

①FAD (Filtered Arc Deposition) 法で作製したDLC膜
 ②ペットボトルにコーティングされているDLC膜

